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Preface

This thesis represents the result of a ten month inves-

tigation of a second order technique for finding the optimum

controls to be used by an aircraft evading an air-to-air heat

seeking missile. The approach involves the application of

optimal control theory utilizing a Differential Dynamic Pro-

gramming Model to determine the optimum controls.

This thesis was sponsored by the Aeronautical Systems

Division as part of a study being conducted by the Air Force

for a better visual display to the pilot for evading an air-

to-air missile.

I have had great satisfaction in developing the algo-

rithm for this project. My only disappointment is that I

was unable to finish the algorithm in order to obtain the

desired results; however, I do feel that I have laid the

groundwork that could lead to a worthwhile second order

technique.

I wish to sincerely thank my thesis advisor, Major James

Funk, for his assistance and guidance during this project. I

would also like to thank my sponsor, Mr. Mike Breza, for his

helpful suggestions.

I dedicate this thesis to my wife, Sharon, and my chil-

dren, Todd and Kristi, who gave me encouragement and under-

standing, and exercised an incredible amount of patience.

Robert Smith
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Glossary

am Angle of attack of missile
Am

-m Bank angle of missile

CDom Parasite drag coefficient of missile

CDoT Parasite drag coe fficient of target

CL Lift curve slope of missile
CLam Lift curve slope of tisie

CL aTLift curve slope of target

Km Induced drag coefficient for missile

KT Induced drag coefficient for target

mm Mass of missile

m T  Mass f target

n Proportionality constant of missile

S m  Surface area of missile

ST  Surface area of target

t f Fuzing time of missile

Tf Fuzing delay interval for missile

Tm Thrust of missile

Tp Time constant of pitch attitude response of targetIP
TT Time cons-. t of thrust response of target
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Abstract

The purpose of the study is to formulate a method to

determine the control strategies that maximize the probabil-

ity of sufvival for an evading aircraft. This is equivalent

to minimizing the probability of kill for the attacking air-

to-air missile. The controls of the evading aircraft consist

of the commanded angle of attack, bank angle, and the com-

manded coefficient of tirust. The missile model developed

is a typical air-to-air infrared missile using proportional

navigation steering. The probability of kill is modeled as

ellipsoidal iso-cost surfaces with a cost value that decays

exponentially as the ellispoid size increases. The flatten-

ing and position of the ellipsoid centroid account for the

shape, orientation and vulnerability of the aircraft. The

problem terminates when the line-of-sight from tha missile to

the target aligns with the surface of the missile's fuzing

cone. The algorithm developed employs a second order dif-

ferential dynamic programming model for optimizing the con-

trols of the evading aircraft.

v
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OPTIMAL MISSILE EVASION

I. Introduction

Purpose of the Study

With the newer fighter aircraft and fire control system

a problem exists for both a+ cking and evading aircraft. A

method of determining and lisplaying real time probability of

kill (Pk) to the pilot of the attacking aircraft using an air-

to-air missile is very desirable. Or, the other hand, the ef-

fectiveness of missiles against aircraft has made it extremely

desirable to provide the pursued pilot with aids for evading

missiles. This study will be concerned with the latter of

these two problems, that is the problem associated with the

e- ling aircraft.

The evasion problem is a two step process consisting of:

1. Determining the optimum control strategies to

be used by the evading pilot.

2. Providing on-board computation and display of

cues or solutions for the pilot.

This study represents the first step in that process, that is

determining the optimum controls to be used by the evading

pilot.

Background

The maximum and minimum effective ranges of air-to-air
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missiles are functions of attacker state, target state, and

performance characteristics of both vehicles. Operational

experience has demonstrated that pilots have difficulty in

accurately estimating valid launch conditions during an en-

counter. Consequently, effective employment of air-to-air

missiles requires two distinct functions: 1) an accurate

missile launch envelope computation performed in an airborne

computer, and 2) display of appropriate parameters to the

attacking pilot so that he can recognize and take advantage

of valid launch opportunities.

The missile-launch envelope considerations are really

beyond the scope of this study, which concentrates on eva-

sion. However, the solutions to the evasion problem could

be used as a basis to determine launch envelopes. It is

still a sizeable step to solve and process the necessary

solution data in order to obtain usable probab.lity of kill

information.

Present airborne digital computers, cuch as in the F-15,

have made it practical to develop and to implement evading

strategy computations and to di 3play these parameters to the

pilot. Thus this study is concerned with the development of

improved strategies to be used by an evading target; solu-

tions that consider more informat.on than past methods.

Scope

The state variable equations are simplified where ever

possible without sacrificing any significant realism. There

is not as much freedom of motion as in the actual case due to

2



the assumption of coordinated turns by the aircraft.

The set of controls were chosen such that the evading

aircraft has flexibility in controls and is still realistic.

The terminal cost function corresponds generally to a

detailed simulation of the end game which incorporates the

shape, orientation and vulnerability of the aircraft. Indi-

vidual component vulnerabilities of a particular aircraft are

not considered, only the general characteristics of a typical

aircraft.

The second order differential dynamic programming algo-

rithm was selected for evaluation in solving this problem.

This choice was based on the high degro of nonlinearity of

the state equations, and convergence difficulties with a

first order algorithm. The algorithm was adapted to this

problem using unspecified final time.

This report will be limited to an approach for obtain-

ing the following information:

1. The trajectory of the missile.

2. The optimum trajectory of the evading target.

3. The minimum Pk of the missile.

4. The optimum controls used by the evading air-

craft.

The information obtained is determined from a specific set of

launch conditions.

Assumptions

Certain assumptions can be made to reduce -he complexity

of the problem without significantly affecting the character

3



( of the solution. They are as followsa

1. Rigid body dynamic mouels for both the missile

and the evading target.

2. The yaw angle is assumed negligible.

3. For the evaler, the angle of attack and thrust

respon-i.%t3 to respective commands are modeled

as lineai first order systems with appropriate

time oc, stants.

4. The bank-crl.e tine responses are assumed rap-

A eno'.th to neglect any time delay in the re-

sponse.

5. The missile fusing c'one angle is fixed, as is

the fu.:-Izw delay time.

S -The durisi -i7 tne atmosphere as a function of

altitude is &iven byf

0 = Ooe Z/ z o

where

P0o  .0023769 slugs/ft3

zn = 23800 ft

Z a the altitude above the earth's sur-

face.

General Ap roach

Thp material is presented in the following order. First

the equations of motion for both the missile and evading air-

craft are derived. The proportional navigation steering is

4



then developed along with the computed acceleration for the

missile. The state equations for the dynamic model are next

outlined. This is followed by the derivation of the cost

function derived from the probability of kill geometry. Next

the terminal constraint geometry is obtained. The required

equations for the differential dynamic programming algorithm

(Ref 1,47) are outlined. Finally, the computational proce-

dure used for the algorithm is discussed, followed by results

and conclusions.

S



II. The State Equations

General Description

The continuous-time dynamic system modeled for this pro-

gram is described by the following set of nonlinear ordinary

differential equationst'

T = f(xT,u) , XT(t o ) -XT

xm = f(Xm) ' Xm(t°) - Xm (1)

where the subscripts T and m denote target states and missile

states respectively. The performance of the system is meas-

ured by minimization of a terminal cost function given as,

Pk = e'XT(tf)QX(tf) (2)

subject to the terminal constraint of the form,

*(Xm(tf),XT(tf)) = 0 (3)

where the final time t f is given implicitly.

Defining the State Vector

The state vector for this optimal missile evasion prob-

lem includes the distance components between the target and

missile, the velocity Of both target and missile, the heading

of target and missile, the flight path angle of target and

missile, the angle of attack of the target, and the coeffi-

cient of thrust of the target. In standard notation the

6



state vector is defined as,

Xm xT- -X-

Zm X3

zM x 3
ZT X4

I'm x 5

T x6mx9
*M x87

CT Xl

YT XII

C T  X12

The controls determined for this problem are the com-

manded angle of attack of the target, the bank angle of the

target, and the commanded coefficient of thrust of the tar-

get. In vector form the controls are designated ass

u1

U = T - u2  (5)

C Tu3CTc u

where the subscript c denotes commands.

Derivation of Force Equations

Both missile and evading aircraft are modeled as rigid
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bodies with their velocity vectors expressed in an inertial

reference frame (ijk) as depicted in Fig. 1.

k
ee

e~ev

"-e,,

i

Fig. 1. Velocity Vector in Inertial Frame

The velocity axis frame is designated as ev' e " The

velocity of the center of mass in the velocity axis system is

=V (6)

transformation into the inertial reference frame yields

-X Vcos(y) sin()

Y= Vcos(y) cos(W) (7)

= Vsin(y)

where X and Y are horizontal position coordinates, Z is alti-

tude, V is speed, y is the flight path angle and 4 is the

8



heading angle with respect to the Y axis.

F In order to obtain the accelerations of each vehicle,

the derivative of the velocity in the aoving frame must be

taken.
vI .4 4ve +v~ v  (8)

and recalling that

ev -- x•v

where the angular rate w is given as

0  - ez  (10)

and where

e = cos(y)eY + sin(y)' v  (11)

therefore, combining Eqs (9), (10), and (11) and substituting

into Eq (8) yields

V = + + V cos(y)e, (12)

The acceleration of the body times the mass of the "ody is

equal to the sum of the external forces, or

ml= (13)

where P is composed of thrust, lift, drag, and gravity. A

more detailed representation of the velocity axis coordinate

system with the forces acting on the vehicle is shown in

L 9
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Fig. 2 and Fig. 3.

ct=angle of
attack

e D=drag
Chord Line S=gravity

- e  L=lift
oT= thrust

DY -

Fig. 2. Velocity Axis Coordinate System
With Angle of Attack

L R=bank angle

eoe

Fig. 3. Velocity Axis Coordinate System
With Bank Angle

10



t Referring to Fig. 2 and Fig. 3 the following force components

are obtainedo

4| Thrust = T cos()e v  + T sin( a) '

Lift = L cos(o)e + L sin(o)'

Gravity = -g cos(y)e* - g sin(y)-v  (14)

where

D = 1/2 p V2 S [Cd + K(CL a) 2

L =1/2p V2 SCL cc (15)

Combining Eqs (12) through (15) the following acceleration

terms are obtained in the inertial axis coordinate systems

= (T cos(i) - 1/2 p S V2 (Cdo + K(OL a)2))/M

- g sin(y)

S-- 1/2 p S V(CL a) cos(O)/m + T Sin(c)
- g cos(y)/V

1/2 p S V(CL a) sin(p)/m cos(y) (16)

Required Aerodynamic Acceleration of the Missile

Proportional navigation provides a rate of change of

the missile heading directly proportional to the rate of rota-

tion of the line-of-sight from the missile to the target

(providing the rates arewithin missile performance limita-

tions). The line-of-sight rate from the missile to the

11
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target is defined as

r x _yr  (
2 r xv2
er = r2  (7

where r2 =r. r and r is the relative distance between the

missile and target, therefore,

r (XT - Xm)t + (Y- + (ZT" Zm)i (18)

and Yr is the relative velocity between the missile and tar-

get, therefore:

r= (VT cos(YT) sin(*T) - Vm cos(ym) sin(4m ))l

+ (VT CoS(YT) cos(*T) - Vm coS(ym) cos(*m))J

+ T(V sin(YT) - Vm sin(ym))R (19)

The desired turn rate for the missile is then equal to a pro-

portional navigation constant (n) times the line-of-sight

rate, or the desired turn rate is n Ir. For a typical air-

to-air missile n is in the range of 2 to 4j and for this

problem n is set equal to 3. The computed acceleration of

the missile, defined as a is then given as;

-n r x vm  (20)

In order to determine the required aerodynamic acceleration

of the missile, designated as n, the effect of gravity must

be incorporated. Therefore, combining Eq (20) with the ef-

fect of gravity the required aerodynamic acceleration becomes

12



= ~ (21)An -ac -an (1

where an is the required aerodynamic acceleration and is

the component of gravity normal to the velocity of the mis-

sile. an is the aerodynamic acceleration which the vehicle

should produce in order to obtain the proper normal accelera-

tion in the presence of gravity. Referring to Fig. 4, grav-

ity in the velocity frame system is given as:

& velocity = -g sin(y) v - g cos(y) Y + 0; (22)
frame

\g cos(y)

ksin(y )

Fig. 4. Determination of Gravity Components
in Velocity Reference Frame

13
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In the required aerodynamic acceleration formula, the

effective component of gravity is that component which is

normal to the velocity vectorl or from Eq (22) effective

component of gravity becomest

a velocity = -g cos(y)y (23)frame
effective

Referring to Fig. 1, transformation from the velocity

coordinate system to the inertial coordinate system is given

bys

e1 1 0 0 cos(*) -sin(*) 0 i

e = o cos(y) sin(y) sin(*) cos(*) 0 j

e 0 -sin(y) cos(y) 0 0 1 kY

which simplifies to,

e cos(,O) -sin() 0 i

e cos(y) sin(*) cos(y) cos(*) sin(y) j (24)

e -sin(y) sin(S ) -sin(y) cos() cos(y) k

Combining Eqs (23) and (24) the effective component of gravi-

ty in the inertial coordinate system then becomes:

a inertial = Sn = g cos(y) sin(y) 3in(4i
frame
effective + g cos(y) sin(y) cos()3

- g cos 2() k (25)

Therefore, Eq (25) along with the computed acceleration of

14



the missile (Eq 20) determines the required aerodynamic accel-

oration of the missile.

Sle of Attack of the Missile

A detailed representation of the forces acting on the

missile is depicted in Fig. 2. Equating forces and noting

that the thrust vector T acts along the vehicle axis of sym-

metry, the force normal to the flight path is given ast

Pnormal m an  Lift + T sin(m) (26)

Assuming that the angle of attack remains small so that sin(M)

approximately equals m, and substituting in for lift, Eq (15),

the force normal to the flight path becomes,

?2

m an  1/2 p V 2  S CL a + T (27)

Solving Eq (27) for the angle of attack of the missile

yields

an m
Mm (28)

1/2 p V2 S CLM +T

Bank Angle of the Missile

In order to determine the bank angle of the missile,

refer to Fig. 5 for a schematic of the bank angle in the

velocity coordinate system. The missile bank angle, 0., is

the angle between the unit vector Z and the vector ua whereY a

ua is the unit vector along the direction of the required

aerodynamic acceleration an . Using the law of cosines, the

15
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e a e

Fig. 5. Determination of Missile Bank Angle

bank angle is then determined byt

:< " = cos' ( . u) (29)
,' ' m - a

where the unit vector u. is determined by:

-4 (3%ua -a -- 10
n

The third component of Eq (24) gives y

e = -sin(y) sin(I)i - sin(y) cos(*)J + cos(y) (31)

Referring to Fig. 5 and Eq (29), the following stipulations

are made on the bank angle:

1. If e ua > 0 then Om is between 0 and 180

degrees,

16



i2. f <0then m is between 180 and 360

ka m
degrees,

where the unit vector e is given ast

e= cos(*)l - sin(*,) (32)

In other words, the positive sign of Om is used when condi-

tion 1. is satisfied, and the negative sign of Om is used

when condition 2. is satisfied.

Defining the Nonlinear Differential State Eguations

The velocity equations represented by Eq (7) and the

acceleration equations represented by Eq (16) produce the

following set of nonlinear ordinary differential state equa-

tions used in this programs

'm -T Vm cos(ym) sin(*m' - VT COS(YT) sin(rT)

S- YT Vm cos(ym ) cos('Om) - VT cos(YT) cos(IT)

Zm = Vm sinlym)

ZT = T sin(YT)

i =(Tm cos(Lm) - 1/2p p 2Vm sm(Cc.m

+ Ki(CLtm am) 2))/mm - g sin(y.)

r = 1/2 T vT2 STO(CT cos(LT) - (CdoT

+ KT(CLdT a /rT - sin(yT )

M 1/2 Pm Sm Vm CLam am sin(O)/mz cos(ym)



1/2 PT ST VT CLaT MT sin(OT)/m7 cos(yT)

;~m = 1/2 Om Sm Vm CLam am c°s(om)/mm

+ Tm sin(am)/mm Vm - g COB(Ym)/Vm

; = 1/2 0T ST VT(CLaT cos(OT)MT/mT

+ CT sin(cT)/mT) - g cos(YT)/VT

aT  =(MTc - T)/T P

6T = (CT" CT)/TT (33)

The subscripts T and m denote the target and missile parame-

ters respectively, Tp is the time constant for the angle of

attack response, and T is the time constant for the thrust

response of the target, am and m have previously been de-

fined by Eqs (28) and (29), aT c T, .nd CT are the control
C

variables defined by Eq (5), and where pm and 0T are defined

by,

PM  oe(Zm/Zo)

PT= Poe(-zT/zo) (34)

18



III. Terminal Cost

The objective of the terminal cost function is to make

the model correspond to detailed simulation of the end game

which incorporates the shape, orientation and vulnerability

of the aircraft. Individual vulnerability of a particular

aircraft is not considered, but only the generic character.

The Pk ellipsoid parameters were chosen to fit detailed sim-

ulation results reasonably well. The general form of the

terminal cost is given by,

(-IT(tf)QX(tf)) (2)

As preciously stated, this optimization problem requires

the minimization oi this terminal cost. The terminal cost is

a convex function describea by ellipsoidal constant cost sur-

faces centered about a reference point near or Gn the air-

craft. Each surface represents a constant value for the

probability of kill for a particular missile. The probabil-

ity of kill (Pk) values decrease exponentially with increas-

ing concentric ellipsoid size. The ellipsoids can be con-

sidered fixed with respect to the target vehicle - moving and

rotating with it. The Pk for each missile approach path is

a function of the crossing aspect angles and the separation

distance between the missile and target paths, as well as the

relative velocity and altitude.

The Pk for each flight is evaluated by determining the

19



separation distance of the missile flight line projection

from the target at the terminal time. The separation dis-

tance of the missile flight line projection is designated r

in Fig. 6,and will be more precisely defined in the following

paragraphs.

/
Separation / iso-Pk Surface

Distance- r D Contours 7

Missile Flight Target Position
Line Projection at Detonation

P - Line-of-Sight

Missile Position
at Fuzing

Fig. 6. Terminal Cost Geometry

20



Designating the fuzing time of the missile as tf, which

is the time when the target intercepts the missile fuzing

cone and is the beginning of the missile delay interval, Tf,

defined as the period of time from fuzing to detonation, The

target position at detonation, designated as the origin 0,

can be determined by

0= X(tf) + LT(tf) * Tf (35)

where X T is the target position at tf and VT is the target

velocity at tf, in the inertial coordinate system. The sep-

aration distance r is the offset distance of the missile

flight path projection from the origin. The vector P, which

is the line-of-sight vector from the missile at fuzing to the

target at detonation is then given by:

E= m(tf) - 0 (36)

where XmCtf) is the position of the missile at the fuzing

time. Substituting Eq (35) into Eq (36) yields

P Y (tf) - XT(tf) - VT(t) * Tf (37)

The vector r, which is the vector from the origin per-

pendicular to the missile flight line projection, is a func-

tion of P,

r= (ux P) xu (38)

which is equivalent to:

21



Designating the fuzing time of the missile as tf, which

is the time when the target intercepts the missile fuzing

cone and is the beginning of the missile delay interval, Tf,

defined as the period of time from fuzing to detonation. The

target position at detonation, designated as the origin 0,

can be determined by

[ 0 XT(tf) + VT(tf) Tf (35)

where X T is the target position at tf and V T is the target

velocity at tf, in the inertial coordinate system. The sep-

aration distance r is the offset distance of the missile

flight path projection from the origin. The vector P, which

is the line-of-sight vector from the missile at fuzing to the

target at detonation is then given by:

S= m(tf) -o (36)

where Xm(tf) is the position of the missile at the fuzing

time. Substituting Eq (35) into Eq (36) yields

=Xm(tf) - XT(tf) - YT(tf) . Tf (37)

The vector r, which is the vector from the origin per-

pendicular to the missile flight line projection, is a func-

tion of P,

u= xP)xu (38)

which is equivalent to:

21



r-P- (P u)u (39)

whdere u is the missile unit velocity vector determined by the

following

Vm(tf)

Combining Eqs (37), (39), and (40) yields:

r A X - T f YT - (Ax- . _m) V~m/Vm,
2 A

+ (V v m) Vm Tf/Vm2 (41)

where all values are determined at the fuzing timc tf, and

where • designates the vector dot product.

The ellipsoidal equation for iso -P contours in matrix

form is:

R2 = rT F r (42)

where r, in Eq (41), can be expressed in the inertial coordi-

nate system. F is most easily defined in the target coordi-

nate system

l/dx2  0 0

I3
FT/Cr~d (43)T y

0 0 llds 2

where F is the scaling matrix determined to approximate the

P data of detailed vulnerability studies by the ellipsoid

22



surfaces. In order to express F in the inertial coordinate

system, the following similarity transformation must be made:

F =CTF C' (44)

CII is the transformation matrix from the inertial coordinate

system to the target coordinate system; and CT transforms

from target to inertial coordinates. In determining CT the

order of rotation is through the heading angle (! T)' fol-

lowed by flight path angle (YT), and then the bank angle

and finally through the angle of attack (aT):

[ 0 0 cos(8T) 0 -sin(ST)

C = 0 cos(a T) sin(aT) 0 1 0

-sin(a cos(aT) sin(OT) 0 cos(OT )

(45)

1 o~y s s(inT) -sin(T) 10 cos(YT) (YT) J sin(T) cos(*T) 0
0 -sin (YT) cos(YT) 0 0 1

Therefore, the transformation from the target coordinate

system to the inertial coordinate system is given by:

C= (01)T (46)

Finally, the terminal cost, defined as F(X(tf); tf) is

given by:
F(X(tf); tf) = e-R 2  

(47)
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R2
where R is defined by Eq (42).

The type missile used for this simulation is an air-to-

air heat seeking missile. The tail of the aircraft was chosen

as the aii point (or origin) for the target. Since the mis-

sile is guided towards the tail of the evading aircraft, kill

probabilities are higher if the detonation is forward rather

than behind the target aim point. A bias term is used to

shift the center Gf the ellipsoids forward to account for

more probable fuzing forward of the aim point. The amount

of shift is designated as b, then the vector from the ellip-

soid center to the tip of the r vector is

D - b b (48)

where r is the "closest approach point" of the projected mis-

sile flight line projection to the aim point (the Pk analysis

was based on r as a parameter). The missile used for this

algorithm has a shift vector b oft

bx = 0

by = 6 ft

b z  2 ft (49)

and, therefore, the ellipsoid equation for the iso-Pk con-

tours in matrix form becomest

R 2 = DT F D (50)

For the missile used, the weighting matrix, FT, in the

target coordinate system is:
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T 11

0 0
(21) 1

0 0 (1
T  oo(22 )

1
0 0

(16)2

Therefore, the terminal cost for the missile used in this

program becomes:

1
0 0

(21)2

1~ (22)

~DTOT 0 0 1

1

F(X(tf)I f) 2e 5(52)
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IV. Terminal Constraint

A typical air-to-air missile has a fuzing cone angle

(FCA) of approximately 60 degrees. The proportional naviga-

tion steering attempts to maneuver the missile so that the

target is constrained inside the fuzing cone angle at all

times. During the terminal portion of the flight, as the

missile approaches the target, practical limitations on mis-

sile maneuvering will allow the target to reach the fuzing

cone angle. At the time when the line-of-sight from the mis-

sile to the target lies on the missile fuzing cone the missile

-fuzing delay is initiated, and, following a preset delay time,

detonation is programmed to occur. The fuzing cone angle and

delay times are normally chosen to give "good" fragment pat-

terns.

The terminal constraint for this problem is, therefore,

when the line-of-sight from the missile to the target equals

the fuzing cone angle. Refer to Fig. 7 for a schematic of the

terminal constraint.

Let A equal the unit missile axis vector and S equal

the line-of-sight (LOS) vector from the missile to the target;

therefore, when the LOS lies on the edge of the fuzing cone

angle then

S x A = Isl IAI sin(FCA) (53)

where IAI is equal to 1. S which is the LOS vector from the

missile to the target is then equal to
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x

Fig. 7. Terminal Constraint Geometry
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XT - Xm

s 'T-m (54)
ZT - Zm

The terminal constraint, designated as 4(X(tf), tf), is then

given as:

(X(tf), tf) = IS x Al2 -IS sin2 (FCA) (55)

A which is the unit missile axis vector in the missile coordi-

nate system is equal to

_A 1 (56)

In order to obtain A in the inertial coordinate system the

transformation from the missile coordinates to the inertial

coordinate system must be made. The transformation from the
m

missile to the inertial coordinate system, AI, is of the same

form as the transformation matrix for the target AT, and re-

calling that

A ( )T (57)

then AM becomes
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o "-.- -cos( ) o-sin(om )

A 0 0 cos(a) sin(a 0 1 0r m MF
0-sin(cm ) cos(am) sin(Om) 0 COs(m

(58)

1 0 0 cos(*~m) -sin(*m) 0rrT
0 coS(Ym) sin(ym) . sin(*m) coS(Im) 0

L -sin(ym) cos(Ym)J L 0 0

where the order of rotation is the angle of attack, then bank

angle, followed by flight path angle, and finally by a head-

irg change. Finally, A in the inertial coordinate system is

A A 1] (59)

The terminal constraint equation is then defined by Eq (55)

where S and A are defined by Eqs (54) and (59) respectively,

and FCA depends on the missile being used. For the missile

used in this program the fuzing cone angle is 60 degrees.
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V. Differential Dynamic Programming Equations

The second order algorithm for fixed end point problems

with the final time (tf) given implicitly Is discussed in Ref

(138). The derivation of 'he required equations will not be

K given here, but the equations to be used for this particular

problem will be discussed.

Initially, a first order algorithm was considered for

use in this program; therefore, the following sample problem

was attempted with the first order methods

i I.X 2

x 2 = -x - Xl3+ u (60)

The rate of convergence on this nonlinear problem using the

first order method was very slow. The second order algorithm

was then attempted on the same problem with the rate of con-

vergence being greatly improved over that of the first order

method. The optimal missile evasion problem is quite nonlin-

ear and as previously outlined has a 12 dimensional state vec-

tor; therefore, the second order algorithm was selected even

though of the disadvantage of taking a large number of second

order derivatives.

The second order method consists of two phases; the

first phase, optimization phase, uses backward integra-

tion of the costate equations to determine the Lansitiv-

ities of the cost function for proper adjustment of the

controls. Throughout this phase the value of the termi-

nal constraint functiui is allowed to wander. The second
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( phase, which is designated as the restoration phase, starts with

controls obtained in the optimization phase and then attempts

to restore the constraint.

In general, the function to be minimized can be given

in the general form oft

J(X b, tft) L(, t)dt

tok 0

+ F(X(tf); tf)

+ b *(X(t), tf) 1)

where the final time tf is given implicitly. For this par-

ticular problem, the controls are indirectly constrained by

C(. the integral cost term

L(IX, u, t) = 1/2(RA.(LTc 2 + RB'(O )2 + RC(C )2) (62)
c c

where RA, RB, and RC, the weights put on the controls, are

selected as the inverse of the maximum value expected for

that control. For this problem the values are

UR = 10

RB = .1

RC = 73 (63)

F(X(tf), tif) the terminal cost, is defined by Eq (52),

4(X(tf, tf), the terminal constraint, is defined by Eq (55),

b is the time invariant Lagrange multiplier, and the state

variable differcntial equations are of the form X = f(X, u, t).
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The necessary sensitivity equations to be integrated in order

to minimize Eq (61) are

-a iH ieH(3, q, V(1 t)

"-x Hx + Vxx(f f(Y, U, t

-V (f + f~ )T VxVxb x U1 x

' )T".Vx =f + f"xtf = (x +  u 01 )T Vxtf

-btf -"VxbT fu u uT Vxtf

"Vbb =-Vxb fu H Uu1 f xb

"Hxx +rfT Vx + Vx f

-(Hux + fuT V)T Hu-I (Hux + fuT Vxx)

-V t -V T H fiuV
"xt f u UU U Xtf (64)

where all quantities are evaluated at , , f and u* unless

otherwise specified. The terms designated with the bar abovo

indicate the values along the nominal trajectory for which

iteration is given by

iu(t) = u*(t) + 01 (t) dx(t) + 02(t) db

+ 3 (t) dtf (65)

where 01 (t), 02(t) and s3(t) are given ast

0l(t) = -Huu-1 (Hux + fuT Vxx)

02(t) -- uu fu T  xb
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03(t) U -Huu - fuT Vxtf  (66)

The functions with the subscripts indicate the partial of

that function with respect to that subscript. Note that db

and dtf are zero except during the restoration phase, and the

third, fourth, fifth, sixth, and eighth equations of (64) are

used only during the restoration phase.

The Hamilton'*an, H, is defined as

H = L + VxT f (67)

The necessary condition for an optimum control, u*. is that

Hu a 0. Taking the partial derivative of the Hamiltonian

with respect to u yields the following u*t

Ul* -Vll/P * RA

u3* -V /T * RC (68)

where V11 is defined as the eleventh component of the costate

equation in the Vx equation (64), etc. Since u2 is an argu-

ment of the sin and cos, the u2* equation is transcendental.

A root finding subroutine is used to solve for u2* from the

following transcendental equation

RB(u 2*) + cos(u2*)(v8 1/2 poe(ZT/Zo) ST

0 VT CLaT acTmT cos(YT)) + sin(u2*)

. (-V10 1/2 poe-(Z/Zo ) sT VT Cv T c /mT) 0 o (69)

The boundary conditions required for the dif-
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ferential equations (64) are,

a(tf)-- 0

Vx  = Fx + *x T

Vxb = T

Vxt Hx + Vxx f

Vbt = x

Vbb = 0

Vxx = F xx + 15 *xx
Vt ftf = <H x , f >+ <f, Vx f> (70)

where > signifies the inner product, and b5 is the nominal

Lagrange multiplier. The computational procedure for the

program is outlined in the next chapter.
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VI. Computational Procedure

In order to understand more clearly the computational

procedure used for the optimal missile evasion differential

dynamic programming model a synopsis of the program will now

be discussed. As was stated earlier in this thesis the main

concern of this program is to determine the minimum Pk of the

missile, as well as the optimum controls used by the aircraft.

The Pk obtained is the minimum for a particular launch condi-

tion when the evading target uses optimum controls: eagle of

attack, bank angle, and coefficient of thrust. In the real

world situation the Pk' for the same launch condition, would

be equal to or greater than that Pk obtained by this program

depending on how skillful the evading target pilot was.

For this program the terminal condition is known, that

is, the stopping criteria occurs when the LOS from the mis-

sile to the target intercepts the missile's fuzing cone as

discussed in Chapter IV. The duration over which the control

is to be applied, however, is not fixed. The interval [to,

tf] is, therefore, not specified explicitly. An initial time

interval of one second was selected to test this program. A

nominal control, U, is then loaded into an array for the

three controls, Each control is selected as a constant

throughout the interval using a step size of .1 seconds,

with the nominal angle of attack, U1, of zero degrees, the

nominal bank angle, u29 of zero degrees, and the nominal

coefficient of thrust, u3, of .025. The nominal value of
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the coefficlurnii. of thrust is based upon a 55,000 lb airplane

at 20,000 ft using military power (7000 lbs of thrust).

A brief outline of the method used in the algorithm is

depicted in Fig. 8; and a more detailed analysis of the pro-

gram is described in steps 1 through 6.

Step 1 - Backward Integration of the State Equations Using

Nominal Control

Since it is known approximately where the terminal con-

ditions occur, these terminal conditions are used to initial-

ize the state equations in order to integrate the states back-

wards in time the one second interval. Referring to Fig. 9

for a geometrical interpretation of the terminal conditions

selected for this problem, the initialization of the state

equations for the backwards integration are:

Xm - XT = 5 ft

- T = -8.66 ft

m  = 20,000 ft

ZT = 20,000 ft

Vm = 18664 ft/sec

VT = 829.5 ft/sec

*m = 30 deg

T = 0 deg

Ym = 0 deg

YT = 0 deg

aT =0deg

CT = .025
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(4 The state equations are then integrated backward from tf to

to using the nominal controls and using the above starting

conditions. The backward integration is stopped at to where

values for the states are obtained and designated as XI(t o)

Step 2 - Forward Integration of the State Equations

The state equations are integrated from to to tf using

the same nominal controls and using the initial conditions

XI(t o ) as determined from step 1. During this forward inte-

gration the nominal cost is determined using

nom -- F(X(tf)h tf) + S *(X(tf); tf)

+ 1/2 (RA.(ul) 2+RB.(u2) 2 +RC.(u 3)2 )dt (72)

0

where F(X(tf)l tf) is the terminal cost as discussed in Chap-

ter III, $(X(tf)i tf) is the terminal constraint as discussed

in Chapter IV and B is the nominal Lagrange multiplier which

was set equal to 1. The procedure used for evaluating the

terminal cost and constraint is discussed in step 3. The

states are then evaluated at tf and designated as X(tf).
Jf

Step 2 - Backward Integration with Unconstrained Terminal

Condition

The following set of differential equations are inte-

grated backwards from tf to tot

States : X
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(,, Vx

VXX (73)

The starting conditions for integrating the above equations

backwards are

X = X(tf)

A =0

Vx  =F x + /x T

VXX- Fxx + V *xx (74)

The terminal conditions for the costate (V1) equations in-

volve taking the first partial derivative of the terminal

cost (F ) and the terminal constraint ($x); while the termi-
0

nal co;ditions for the Vxx equations involve taking the second

partial derivative of the cost (Fx) and constraint (*xx).

Both the terminal cost and terminal constraint are functions

of a large number of the states, states one through eleven

for the terminal cost, and states one through ten for the

terminal constraint. Since both the first and second partial

derivatives of these functions are required, a large number

of terms are involved. Since high accuracy is not required

for the values used for the initialization of the differen-

tial Equations (74), the analytic solutions to the initiali-

zation of the Vx and Vxx equations will not be attempted.

The derivative V. is approximated using divided differences

F(Xo  + Axi )  - F(Xo  - Axi) i = 12, #tll

FX 2aXi=1
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and

I(X° + Lxi)- F(X° - AXi) i- , 2, ... 1o (75)$xi =2Xi

where Fxi is the numerical value of the first partial deriva-

tive of the terminal cost with respect to the ith state; and

*xi is the numerical value of the first partial derivative of

the terminal constraint with respect to the ith state. The

nominal vector, X0, is the value of the states at the final

time. AX is set equal to 1% of the value of that state at

the final time plus an epsilon. The epsilon is added in or-

der to provide a usable perturbation even when the nominal

value is small or zero. This prevents division by zero. The

particular values for the AX1 are:

AX1 = .01 X1(tf) +1i ft

AX = .01 X (t) + 1 ft
2~ 2f

AX3  = .01X3(tf)+ift

AX2 .01 X4(tf) + 1 ft

AX = .01 Xs(tf) + 1 ft/sec

AX6 = .01 X6 (tf) + 1 ft/sec

AX = .01 XT f + 1 degree

AX8 = .01 X 8(tf) + 1 degree

AX6 .01 Xg(tf) + 1/2 degree
A - .01 X (tf+1)ege

AXo0  .01 XI0(tf) + 1/2 degree

AX1l = .01 X11(tf) + 1/2 degree (76)

Subroutine FFX oalculates F,. and subroutine FPX calculates
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*xi'

The derivative is approximated using

Fxi =F(X + AXi + AXj) - F(X o - AX i + AX)

- F(Xo + AX. - AX.) + F(X - AX - AX.)] /

4 AXi AXj

for i / j i = 1,2, ...11

j = 1,2, ... ii

and

F(Xo + AXi) -2 F(Xo ) + F(Xo -AXi)
Fxxj =2 (77)

xjzj 1 AX 2

for i j i 1,2, ...ll

where F is the numerical value of the second partial de-

rivative of the terminal cost. *xixj , the second partial de-

rivative of the terminal constraint, is computed in the same

way. The AXi and AXj are the same values as that previously

determined in Eq (76). Subroutine FFXX calculates Fxix and

subroutine FPXX calculates *Xixj.

As previously stated in step 2, at the end of the forward

integration the terminal cost and terminal constraint values

are required. For the terminal cost, subroutine FFXX is used

to calculate this valise. The terminal cost is calculated in

that portion of the routine where zero displacement of the

states is required. The terminal constraint is calculated by

subroutine FPXX using the same procedures.
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Returning to the main program with the boundary condi-

tions, Equations (73) are integrated backward from tf to to.

Subroutine F is used for this backward integration. During

this backward integration H is minimized with respect to u
to obtain _*. As previously stated, the equation for u 2 is

transcendental, therefore, subroutine F determines u2* from

the transcendental equation at each step. The solution for

u2* is obtained by iteration using the root finding approxi-

mation

flU 2o) + f'(u 2o) 6uz 2 0 (78)
0 0

or solving for 6u2

6u 2 = - f(U) if If'(U 20)> (79)

0

where 5u2 is the change in u2 from one iteration to the next

and f(u2o) is the transcendental function evaluated at u2
0 20

f'(U 2o) is the derivative with respect to u2 evaluated at
A 0

U2 o. The new updated estimate is then
20

U2 + 5u2  (80)
20 2

This iterative type procedure continues until the solution

converges (i.e., 6u2 becomes less than a specified tolerance),

If jf'(u 2 )I approximately equals zero then the second deriv-
0

ative has to be taken and 6u2 becomes
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2 f(U2

of (u (81)

where the proper sign is chosen such that JU2 + 6u2 1 is min-

imized.

The Vx and Vxx equations are integrated backwards usirg

the values of u*. The A equation is integrated backward

using the difference between u* and Unominal A test param-

eter value of .0005 was preselected for A. Throughout the

entire backward integration the values of Ol(t), which is

defined by Eq (66), are stored. The time is noted when A

exceeds the preset value of .0005, and is designated as

NEFF(2), the time of an "effective" change in A.

LStep _4 - Forward Integration of State Equations Using Improved

Control

The state equations are now integrated forward again

from to to tf maintaining the same initial conditions but

using the new control

-%ew - u* + 0 1 (t) dx(t) (82)

where 0 1 (t) was calculated in step 3 and dx(t) is the differ-

ence between the states using the nominal control and the

states using the Unew control designated Xn. Ihring the

first iteration, dx(to) equals zero and then dx is iAcu-

lated for the remaining steps to tf. Throughout the entire

forward integration the new cost, designated as Jstar' is
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calculated. Jstar includes the integral cost, the terminal

cost, and the terminal constraint penalty calculated the same

way as in step 21 but all functions are evaluated using Unew.

The requirement for a ,tisfactory new control is that the

change in cost be greater thah some constant times A(t ).

Jacobson and Mayne Ref (1,25) suggest initially that the

ccn.vtant equal .51 therefore, the requirement for a valid

new control, new, iu

Jnom " star > C A(to) (83)

If inequality (83) is satisfied then the Unew control is

loaded into the Unomina I control and then step 2 is repeated.

If inequality (83) is not satisfied then a step size adjust-

ment method is required to prevent overstepping the region

of linearity. The 8tep size adjustment method consists of

determining the position on the integration Interval half

way between NEFF(2), which is the first point on the back-

ward integration whore A exceeded .0005, and t., This new

position is called MK in the main program. The _Unew control

is then changed by the follow'ng method,

Unew Unominal

on the interval from to to MK and then

unew - + l(t) dx(t) (84)

on the interval from MK to tf. Using the now control, step
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4 is then repeated but now the change in states, dx(t), is

zero from to to MK since the same control is used over that

interval, and on the interval from MK to tf, dx(t) is cal-

culated as before. Again the change in cost is evaluated

and the criteria for a valid new control is

Jnom -star > C A(MK) (85)

The step size adjustment method criteria specifies that

the change in cost must be greater than a predetermined

value. If the criteria is not met,, MK must be moved to-

ward the final time so the old control is used over more

of the total interval. This iterative type procedure is

continued until MK and NEFF(2) coincide. When this condi-

tion is satisfied then C is set equal to zero. When C is

set equal to zero, the most optimum trajectory has been found

using C equal to .5. The unew control is then again loaded

into the Unominal control and step 2 is repeated. The new

criteria for a valid control is that

Jnom " Jstar > 0 (86)

This is a more refined criteria in that as long as Jstar is

less than Jnom the control is valid. Again this iterative

type procedure is used until MK and NEFF(2) coincide. The

most optimum ,control has been determined by treating the prob-

lem as a free end point, that is the terminal constraint cri-
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! (1 teria has not been satisfied. The next step will be to re-

store the terminal constraint condition, Eq (55).

Stop 5 - Backruard Integration with Constrained Terminal

Condition ,

The following set of differential equations are inte-

grated backwards from tf to to:

States t X

x
V

ixx
Vib

bb

6tf

Vtbtf
Vtftf (87)

with the initial conditions of:

X = Xn(tf)

Vx  = Fx + xT -

VXX FIx + B *xx

Vxb 
= 

T

Vbb =0.

Vxtf = x + Vxx f
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Vbt *

Vtt <Hx, f> + r (88)

The initial conditions for the Vx' Vxx and Vxb equations are

determined the same way as in step 3. The initial conditions

for the Vxt Vbt f and Vtftf are calculated analytically by

subroutine STCST. During the backward integration using Unew,

02(t) and 03(t) are determined from tf to to where 02(t) and

03(t) are defined by:

02(t ) = -Huu fuT Vxb

03(t) = -Huu - 1 fuT Vxtf (66)

The new control to be evaluated on the next forward in-

tegration is given by

u(t) ' Unew + 02 (t) db + p3 (t) dtf (89)

where Unew is defined in Eq (84) and where db and dtf are

given by

db =E Vbb Vbt l1 vbl(0E -f (90)
dt Vtb Vtt Vt

f f f f

All values are determined at to, therefore, db and dtf are

constants for a particular integration cycle. E is also a

constant for a particular integration cycle which initially

equals 1 as suggested in Ref (1,43). The quantity dtf is the
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change in the final time of the trajectory; and for this

problem was limited to a maximum of 10% of the final time.

That is, the criteria for dtf is

. Idtfl .1 tf (91)

where tf is the final time of the trajectory. If inequality

(91) is not satisfied then E is set to E/2 and then db and

dtf are re-evaluated by Eq (90). If inequality (91) is

satisfied then proceed on to step 6.

Step 6 - Forward Integration of State Equations Usin Optimum

Control

The control given by Eq (89) is designated as Ropt in

the program. The state equations are then integrated from

t0 to tf using 3opt' The values of the states are determined

and the terminal constraint is then calculated by using sub-

routine FPXX. The value of this optimum constraint is des-

ignated as PCOSTP, while the constraint evaluated in step 4

was designated as PCOSTN. In order to determine if there has

been an improvement in the end point error the following cri-

teria must be satisfied,

IPCOSTNI > IPCOSTPl (92)

where again PCOSTN is the value of the terminal constraint

by using Unew, and PCOSTP is the value of the terminal con-

straint using Ropt' If inequality (92) is not satisfied then

set E to E/2 and return to Eq (90) where db and dtf are re-
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evaluated. If inequality (92) is satisfied then the opt

control is loaded into the Unominal control and step 3 is

repeated. The stopping criteria for this restoration phase

is when the terminal constraint satisfies

I$(X(tf), tf)l < .005 (93)

The final values obtained by this program are the fol-

lowing,

1. The trajectory of the missile,

2. The optimum trajectory of the evading target,

3. The optimum controls used by the target and,

4. The value of the terminal cost, which is the

minimum Pk the missile would obtain for the

initial conditions as outlined by Eq (71).

A detailed schematic of the differential dynamic algo-

rithm used for this program is illustrated in Fig. 10, Ap-

pendix A.
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VII. Results

As previously stated this study attempted to determine

the optimal controls to be used by an aircraft evading an

air-to-air missile; with the controls consisting of the angle

of attack, the bank angle, and the coefficient of thrust.

The state vector for this missile evasion problem included

the distance components between the target and missile, the

velocity of both target and missile, the heading of target

and missile, the flight path angle of target and missile, the

angle of attack of the target, and the coefficient of thrust

of the target. The performance of the system was measured by

the minimization of the terminal cost function, which was the

Pk of thp nissile.

The objective of the terminal cost function was to make

the model correspond to detailed simulation of the end game

which incorporated the shape, orientation and vulnerability

of the aircraft. The individual vulnerability of a particular

aircraft was not considered, but only the generic character.

The Pk ellipsoid parameters were chosen to fit detailed sim-

ulation results reasonably well. Previous optimal missile

evasion investigations modeled the terminal cost function as

the magnitude of miss distance only and did not consider the

vulnerability of the aircraft as a function of the orienta-

tion geometry.

Due to the complexity of the algorithm for this optimi-

zation program and the imposed time limit, the desired optimal
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solutions for this investigation were not obtained.

Prior to attempting this optimal missile evasion problem
the following system consisting of two states was solved using

both the first order and second order methods,0X Xl = X2
1 3

i2 -X I- x1 3 + u (60)

with the terminal constraint consisting of

11(X(tf); tf) = X - 2X2 - 2 (94)

and the integral cost consisting of

L = 1/2 Of 5 (X1 2 + X22 + u()dt (95)

Both the first order and second order techniques were

attempted in order to evaluate the feasibility of using

either of these techniques for the optimal missile evasion

problem, which consists of a system with 12 state variables.

In this sample problem it was determined that the rate of

convergence using the first order technique was extremely

slow. Witn this in mind it was determined that if the first

order method was attempted on the evasion problem then the

slow rate of convergence would make it extremely difficult

to obtain the many desired solutions, thus the second order

technique was selected as the best candidate method for this

program.
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The greatest disadvantage of using the second order tech-

nique is the high dimension of the system of differential

equations. For any optimization problem with an unspecified

final time, using the technique outlined in Ref (1.J46), the

following equations must be calculated:

-a =H -H (5, UV ,t)

=V + V XX(f - (,i;t))

V xb = (f + fu 01)T Vxb

- (f +c f 0T Vxt

Xt x uf

_ b f= VxbT u uu- u T xtf

_ bb =_xb T u H - fu Vxb

_ x = xx +fx T xx , xx fx

-(H u + fuTV. )Huu-l(Hux + fT Vx)

_ tf=-xt fu Huu***fuTVxt (64)

with the control determined by:

u(t) = u*(t) + 01(t) dx(t) + p2(t) db

+ 0 3(t) dt f (65)

and where 01, 021 and 03are calculated by:

0()= -Huu- 1 (Hux + f uT Vxx)

02(t) = -Hu fu T Vxb
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( 3 (t) = 1uu  fu Vxt (66)

In Eq (64) the total number of differential equations to

be integrated exceeded 130 for this problem. The Vx equations

require the second partial derivatives of the Hamiltonian with

respect to the states, and several of these equations were in

excess of 15 lines of fortran computer coding.

In addition to the integration of the above equations,

the terminal conditions had to be computed for each equation.

These computations required the use of a numerical differ-

entiation technique as was outlined in Chapter VI. It should

be noted that this procedure requires a significant amount of

calculation in order to obtain the numerical derivatives for

these terminal condition values. Along with these calcula-

tions, an iteration was required to solve the transcendental

equation for the optimizing control, as discussed in Chapter

VI.

When attempting to run this prog.-v on the computer the

size of the program was such that the core memory allocation

requirement was in excess of 177,000 (octal) words. The cor-

responding compilation time for each run was one hundred

thirty-two seconds.

In order to reduce the execution time the initial flight

interval was limited to one second with the intention of in-

creasing the limit when the program was working properly.

The results to this point indicate that the state equations

(. Lhave been partially successful in both the backward and
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forward integration for the one second time interval. How-

ever, difficulty was encountered during the backward integra-

tion of the costate equations which determine the sensitivity

coefficients. The backward and forward integration of the

state equations plus the initial backward integration of the

costate equations required over fifty seconds execution time.

Due to the large memory requirement and the lengthy exe-

cution time, this program was placed near the bottom of pri-

orities in the central computer. Turn-around time for each

computer run varied between 2 and 3 days.

In addition to the slow computer turn-around time, there

exists within the program itself the inherent problem associ-

ated with debugging the complex program code. That is, there

exists some probability of programming errors even though

every attempt was made to limit such a possibility. The com-

plexity of the equations used in this program definitely con-

tributes to the possibility of a mistake in derivation of the

equations.

This investigation demonstrates the desirability of find-

ing an alternate method of generating the equations required

for the second order optimization technique, The alternate

method should not require the lengthy derivation of partial

derivative equations nor the large amount of memory required

to compute them.

A procedure that satisfies these requirements is a higher

order computer language designated PROSE, Ref (2,1). It eval-

uates automatically partial derivatives as a by-product of
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the computations in the model. The resulting derivative values

are exact to the precision of the computer, as though they

had been evaluated by formula derivation and evaluation.

This derivative evaluation by PROSE would eliminate the

lengthy, time consuming, and possibly erroneous derivation of

the partial derivatives.
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VIII. Conclusions and Recommendations

The method of solution was one of the primary concerns

in this study. The rate of convergence using a first order

optimization technique for solutions to this missile evasion

problem was estimated to be extremely slow and, therefore,

un..cceptable. The second order technique used for this pro-

gram also has disadvantages; the two primary ones are long

computer execution times and the large number of equations

that had to be derived. The following procedures are recom-

mended as additional efforts in solution methodology:

1. Simplify the problem formulation as follows:

a. Use an altitude difference between the

missile and target as one state instead

of the state for each missile altitude

and target altitude.

b. Assume the time responses for the angle

of attack of the target and the coef-

ficient of thrust of the target are

rapid enough to neglect any time delay

in the response.

With the above simplifications incorporated

into the program the state vector would be

reduced to nine states.

2. Complete the second order optimization routine

as derived in this thesis in order to obtain

the optimum control strategies.
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Ii. Investigate use of the PROSE programming lan-
guage for solving the evasion problem and ob-

taining the optimum control strategies.

4. Compare the results obtained with the optimi-

zation program derived for this thesis to

those obtained with PROSE.
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Appendix A

Detailed Schematic of the Program

A detailed flow chart of steps 1 through 6 used in the

program is illustrated in Fig. 10. The initial values of

the variables MK, C, b, and E are annotated at the top of

the diagram. Recall that the initial value for-_nom is

given as the followings

U2  0 . (96)

u 3 -. 025

where the controls are assumed constant throughout the en-

tire time of flight.

NEPF(2) is the point at which A exceeds the present

value of .00051 and in the calculation of db and dtf recall

that these values are determined by the followings

db Vbb Vbt f  Vb (90)

tf L b Vtftfj t

LL
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